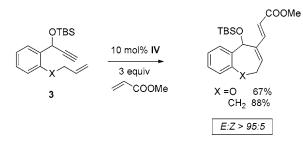
Selective Domino Ring-Closing Metathesis–Cross-Metathesis Reactions between Enynes and Electron-Deficient Alkenes

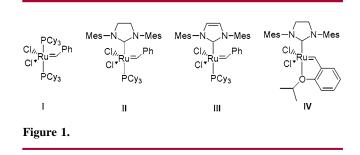

Frédérique Royer, Claire Vilain, Laurent Elkaim, and Laurence Grimaud*

Laboratoire Chimie et Procédés, Ecole Nationale Supérieure de Techniques Avancées, 32 Bd Victor, 75739 Paris Cedex 15, France

grimaud@ensta.fr

Received April 10, 2003

ABSTRACT


A selective domino ring-closing metathesis (RCM)-cross-metathesis (CM) process between enynes and electron-deficient alkenes is reported. The conditions have been optimized for enynes 3 and methyl acrylate with catalyst IV. The scope and limitations of this reaction are described, and a possible mechanism is discussed.

Over the past decade, olefin metathesis has emerged as a powerful tool in organic synthesis.¹ The development of ruthenium carbene complexes \mathbf{I}^2 \mathbf{II}^3 \mathbf{III}^4 and \mathbf{IV}^5 by Grubbs' and other groups is particularly notable because of their availability, operational simplicity, and remarkable functional group tolerance (Figure 1).

Envne metathesis is a very interesting and useful way to synthesize 1,3-dienes.⁶ In an intramolecular version, the alkylidene part of the alkene moiety migrates onto the alkyne

^{(4) (}a) Huang, J.; Stevens, E. D.; Nolan, S. P.; Petersen, J. L. J. Am. Chem. Soc. 1999, 121, 2674. (b) Scholl, M.; Trnka, T. M.; Morgan, J. P.; Grubbs, R. H. Tetrahedron Lett. 1999, 40, 2247.

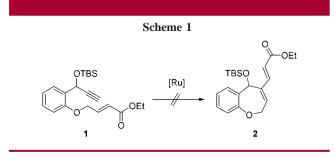
ORGANIC LETTERS

2003Vol. 5, No. 11

2007-2009

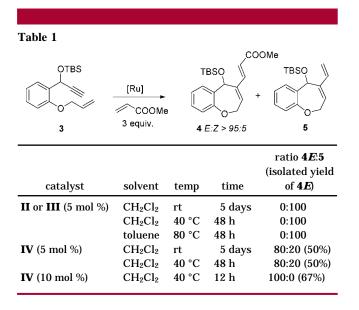
carbon. We were interested in using such a reaction to obtain compound 2 from the conjugated alkene 1 (Scheme 1).

Unfortunately, this reaction failed even with highly active catalysts such as II, III, or IV, probably due to the


⁽¹⁾ For recent reviews, see: (a) Schuster, M.; Blechert, S. Angew. Chem., Int. Ed. Engl. 1997, 36, 2067. (b) Grubbs, R. H.; Chang, S. Tetrahedron 1998, 54, 4413. (c) Armstrong, S. K. J. Chem. Soc., Perkin Trans. 1 1998, 371. (d) Phillips, A. J.; Abell, A. D. Aldrichimica Acta 1999, 32, 75. (e) Blechert, S. Pure Appl. Chem. 1999, 71, 1393. (f) Fürstner, A. Angew. Chem., Int. Ed. 2000, 39, 3013. (g) Trnka, T. M.; Grubbs, R. H. Acc. Chem. Res. 2001, 34, 18.

⁽²⁾ Schwab, P.; France, M. B.; Ziller, J. W.; Grubbs, R. H. Angew. Chem., Int. Ed. Engl. 1995, 34, 2039.

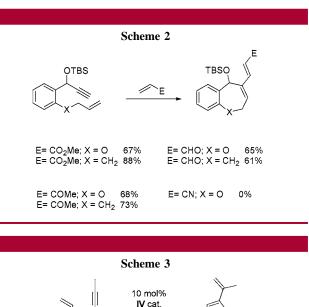
⁽³⁾ Scholl, M.; Ding, S.; Lee, C. W.; Grubbs, R. H. Org. Lett. 1999, 1, 953


^{(5) (}a) Kingbury, J. S.; Harrity, J. P. A.; Bonitatebus, P. J., Jr.; Hoveyda, A. H. J. Am. Chem. Soc. 1999, 121, 791. (b) Garber, S. B.; Kingsbury, J.

S.; Gray, B. L.; Hoveyda, A. H. J. Am. Chem. Soc. 2000, 122, 8168. (6) For recent reviews, see: (a) Mori, M. Top. Organomet. Chem. 1998, 1, 133. (b) Storm Poulsen, C.; Madsen, R. Synthesis 2003, 1, 18.

deactivation of the alkene moiety. To obtain compound **2**, we envisioned another strategy. Herein, we wish to report a tandem ring-closing metathesis (RCM)-cross-metathesis (CM) reaction between an enyne and a conjugated alkene.⁷

The metathesis reactions were effected with 3 equiv of the CM partner as classically required,⁸ and different solvents and catalysts were used (Table 1). With catalyst **II** or **III**,

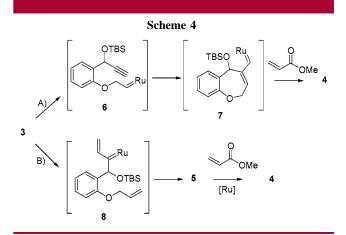

we only obtained unsubstituted diene **5**. No trace of CM product **4** was detected. The use of catalyst **IV** (10 mol %) in dichloromethane at 40 °C for 12 h leads to the best results.

If less than 10 mol % catalyst is used, some diene 5 was obtained, but it can be resubmitted to the same conditions to furnish the desired product 4E.

Such an amount of catalyst might be necessary because of a possible chelation by the diene moiety, decreasing ruthenium turnover. This reaction is very selective: only the (E)-isomer was detected by ¹H NMR.

Several engues and unsaturated alkenes were screened for this tandem reaction (Scheme 2).

In all cases, except for acrylonitrile, the conjugated (*E*)dienes were obtained in moderate to good yields with only traces of the homocoupling product. In the case of electronrich alkenes such as styrene, allyltrimethylsilane, or *tert*butyldimethylsilyloxyallyl ether, only enyne RCM products were formed, contaminated by alkene homocoupling compounds. In the case of a substituted alkyne, we only observed the RCM product even after 3 days at reflux in dichloromethane (Scheme 3).



To our knowledge, this reaction is among the first example of a CM between a diene and an alkene.⁹

°COOMe

71%

Regarding the deactivation of the conjugated alkene toward metathesis, a mechanism starting with a CM process between the acrylate and the alkyne is mostly improbable. In the case of electron-rich olefins such as styrene, the dimerization observed could result from such a mechanism. But in the case of electron-deficient olefins, two distinct mechanisms can be invoked to explain the formation of **4**: (A) initial metathesis occurs at the alkene giving rise to carbene **7** (via carbene **6**), which in turn undergoes CM with the electron-poor alkene, and (B) the initial reaction site is the alkyne, leading to the more substituted vinyl alkylidene **8**,¹⁰ and an intramolecular process gives compound **5**, which is engaged further in a CM reaction with the conjugated alkene (Scheme 4).

The formation of diene **5** observed all along the process seems to confirm pathway B.¹¹ Furthermore, we have

⁽⁷⁾ For a previous example of a tandem CM/RO/RCM, see: Randl, S.; Lucas, N.; Connon, S. J.; Blechert, S. Adv. Synth. Catal. 2002, 344, 631.

demonstrated that diene **5** could be re-engaged in a CM reaction simply by treating it with 3 equiv of methyl acrylate in the presence of catalyst **IV**.

In conclusion, we have developed a very selective domino RCM-CM process between enynes and conjugated alkenes. We have also demonstrated that the butadiene moiety is a

good partner for CM reactions. This method provides an efficient one-step formation of conjugated (E)-1,3-dienes under mild conditions.

Acknowledgment. We thank Dr. J. Prunet for fruitful discussions, Prof. S. Nolan for the generous gift of catalyst, and N. Morin for HRMS analyses.

Supporting Information Available: Synthetic procedures for the one-pot RCM–CM procedure as well as analytical and spectral data for dienes 4*E*. This material is available free of charge via the Internet at http://pubs.acs.org.

OL034620R

⁽⁸⁾ Chatterjee, A. K.; Grubbs, R. H. Angew. Chem., Int. Ed. 2001, 40, 1277.

⁽⁹⁾ A previous example of a CM between a diene and an alkene was reported by Blechert et al. (in ref 7, see footnote 7).

⁽¹⁰⁾ More substituted vinyl alkylidene is the more stable one according to: Ulman, M.; Grubbs, R. H. *Organometallics* **1998**, *17*, 2484.

⁽¹¹⁾ If this is the case, the process is a *pseudo*-domino one as described in: Poli, G.; Giambastiani, G. *J. Org. Chem.* **2002**, *67*, 9456–9459.